Matematika/Pirmos eilės tiesinės diferencialinės lygtys

Iš testwiki.
Pereiti į navigaciją Jump to search

Šis straipsnis yra apie Pirmos eilės tiesines diferencialines lygtis.

  • y+P(x)y=Q(x),
dydx+P(x)y=Q(x),
y=uv, y=uv+uv.
uv+uv+P(x)uv=Q(x),
v(u+P(x)u)+uv=Q(x);
u+P(x)u=0,
duu=P(x)dx,
u=C1eP(x)dx;
C1eP(x)dxv=Q(x),
v=1C1Q(x)eP(x)dx,
v=1C1Q(x)eP(x)dxdx+C2;
y=uv=C1eP(x)dx(1C1Q(x)eP(x)dxdx+C2)=eP(x)dx(Q(x)eP(x)dxdx+C1C2)=

=eP(x)dx(Q(x)eP(x)dxdx+C).


  • y=2yx+x2ex1,
y2xy=x2ex1,
y=uv, y=uv+uv,
uv+uv2xuv=x2ex1,
v(u2xu)+uv=x2ex1;
u2xu=0,
duu=2xdx,
ln|u|=2ln|x|,
u=x2;
x2v=x2ex1,
dv=(ex1x2)dx,
v=ex+1x+C;
y=uv=x2(ex+1x+C)=Cx2+x2ex+x.


  • yay=ebx,
y=uv, y=uv+uv,
uv+uvauv=ebx,
v(uau)+uv=ebx;
uau=0,
dudx=au,
duu=adx,
ln|u|=ax,
u=eax;
eaxv=ebx,
dvdx=ebxax,
dv=e(ba)xdx,
v=1bae(ba)x+C, jei ab ir v=x+C, jei a=b, nes e0=1;
y=uv=eax(e(ba)xba+C)=ebxba+Ceax, jei ab ir y=eax(x+C), jei a=b.


  • xy+P(y)x=Q(y),
dxdy+P(y)x=Q(y),
x=uv, u=u(y), v=v(y).


  • y=1cos2yxtany,
1yx=xy,
1xy=1cos2yxtany,
xy=cos2yxtany,
xy+xtany=cos2y,
x=x(y), x=uv, xy=uv+uv=u(x)v(x)+u(x)v(x),
uv+uv+uvtany=cos2y,
v(u+utany)+uv=cos2y;
u+utany=0,
duu=tanydy,
ln|u|=ln|cosy|;
vcosy=cos2y,
v=cosy,
v=siny+C;
x=uv=cosy(siny+C)=sinycosy+Ccosy.


Konstantos variacijos metodas (Lagranžo metodas)

  • y+P(x)y=Q(x);
y+P(x)y=0,
yy=P(x),
lny+lnC=P(x)dx,
y=CeP(x)dx;
y=C(x)eP(x)dx;
y+P(x)y=C(x)eP(x)dx+C(x)eP(x)dx(P(x))+P(x)C(x)eP(x)dx=Q(x),
C(x)eP(x)dx=Q(x),
C(x)=Q(x)eP(x)dx,
C(x)=Q(x)eP(x)dxdx+C.


  • y2xy1+x2=1+x2, y|x=2=5;
y2xy1+x2=0,
dydx=2xy1+x2,
dyy=2x1+x2dx,
dyy=d(1+x2)1+x2,
ln|y|=ln|1+x2|+ln|C|,
y=C(1+x2);
y=C(x)(1+x2), y=C(x)(1+x2)+C(x)2x;
y2xy1+x2=C(x)(1+x2)+C(x)2x2xC(x)(1+x2)1+x2=1+x2,
C(x)(1+x2)=1+x2,
C(x)=1,C(x)=x+C;
y=(x+C)(1+x2);
5=(2+C)(1+22),
1=2+C,
C=1;
y=(x1)(1+x2).


  • dzdx+3xz=0,
dzz=3dxx,
ln|z|=3ln|x|+ln|C|=ln|Cx3|,
z=Cx3;
C=C(x), z=C(x)x3, dzdx=dC(x)dx1x33C(x)x4,
dzdx+3xz=dC(x)dx1x33C(x)x4+3xC(x)x3=x3,
dC(x)dx1x3=x3,
dC(x)dx=x6,
dC(x)=x6dx,
C(x)=x77+C1;
z=C(x)x3=x77+C1x3=x47+C1x3.